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Abstract
We present analytical results on the transient current response of noninteracting open electronic
systems under time-dependent external voltages in both linear- and nonlinear-response regimes.
The derivations are based on an equation of motion formalism for the system reduced
single-electron density matrix (Zheng et al 2007 Phys. Rev. B 75 195127). Dissipative
interactions between the system and leads are treated by the nonequilibrium Green’s function
approach. The linear-response dynamics is characterized by the analytical admittance spectrum
of the open system, through which the quantum coherent transport properties are mapped to
equivalent classical circuits. The nonlinear-response current spectrum not only resolves the
intrinsic energetic configuration of the system, but also reflects the unique dynamical features
due to the transient characteristics of the applied voltages.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Investigation on the transient dynamics of open electronic
systems is of fundamental significance to the development
of nanoelectronics [1–13]. The quantum coherent transport
properties of mesoscopic and nanoscopic conductors have been
studied extensively [2, 9–11, 14]. Efforts have been made
to map the linear-response electronic dynamics to equivalent
classical circuits, for the convenience of describing quantum
transport properties and designing nanoelectronic devices. For
instance, it has been demonstrated both experimentally [11]
and theoretically [8–10] that, at low frequency and low
temperature, the coherent dynamics of a single-lead quantum
dot can be characterized by a serial resistor–capacitor circuit.
The quantum features are partially manifested by the circuit
parameters. The resistor is associated with the charge
relaxation rate, while the capacitor originates from the finite
density of states at the system-lead contact [8]. In particular,
for a single-channel system at zero temperature, the resistor
assumes exactly a value of half a resistance quantum, which is
universal and independent of the transmission details [8].

As the voltage amplitude becomes large, high-frequency
electronic transition modes are activated. The linear-response
theory no longer adequately characterizes the dynamic
behavior of the open system, and nonlinear effects need to
be explicitly accounted for. Moreover, the admittance and
current spectra vary sensitively as the voltage changes its time
dependence. Consequently, nonlinear-response dynamics not
only resolves the intrinsic system properties, but also reflects
the unique features due to the transient characteristics of the
applied voltage. These nonlinear features provide additional
information that can be used for a more comprehensive
diagnosis of the system under study. For instance, it has been
demonstrated that the nonlinear-response current spectrum
under a step voltage reveals distinctly and faithfully the
energetic configuration of an interacting quantum dot [15].

To have a more insightful understanding of the quantum
coherent features of open systems, we investigate the
dynamic properties of noninteracting model systems. The
transient current in response to time-dependent voltage has
been addressed by Jauho et al in a general framework of
nonequilibrium Green’s function (NEGF) formalism [16]. In
their studies the transport dynamics is initiated from a state
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where the open system and leads are completely decoupled
before the application of turn-on voltage. In this work we
adopt an experimentally more relevant scenario, where a
fully coupled composite system is considered, which stays
in thermodynamic equilibrium prior to the voltage switch-on.
The voltage-driven electronic dynamics has also been solved
numerically by a formally exact hierarchical equations of
motion formalism from the perspective of quantum dissipation
theory [15, 17–20]. Intriguing phenomena such as dynamical
Coulomb blockade [15] and dynamical Kondo transitions [20]
have been revealed for interacting systems. However,
analytical results are essentially important for a clear physical
picture of the underlying mechanisms. In this work, we
derive analytical response current spectra for noninteracting
open systems. All the derivations are based on an equation
of motion (EOM) for the reduced single-electron density
matrix (RSDM) of the open system [7]. In the linear-
response regime, we analyze in detail the voltage-independent
dynamic admittance of the open system. Based on the
analytical admittance spectrum obtained, we then propose
and evaluate the equivalent classical circuit associated with
coherent transport through the system. For electronic dynamics
beyond linear response, we focus on the unique features due
to the specific time-dependent form of applied voltage. The
characteristic single-electron transitions under various types of
external voltages are also highlighted. In particular, analytical
response current spectra are obtained for step-, delta-, and
sinusoidal-function voltages.

The remainder of this paper is organized as follows. In
section 2, we derive the general formulae of both the linear- and
nonlinear-response current spectrum under externally applied
voltages. In section 3, the linear-response dynamic admittance
of a two-lead model system and its equivalent classical circuit
are presented. In section 4, we exploit the unique features
of the transient response current due to the specific time-
dependent form of applied voltage. Finally, we conclude in
section 5.

2. Response current spectrum

2.1. Linear-response current spectrum

Consider a general case that a noninteracting system is coupled
to an arbitrary number of leads. Upon the application of a time-
dependent voltage Vα(t) to the lead α, the chemical potential
of the lead α varies accordingly, i.e. μα(t) = μ

eq
α + �α(t) =

μ
eq
α − eVα(t). The equilibrium Fermi energy μ

eq
α at each lead

is set to zero. The noninteracting system of primary interest
is characterized by the reduced single-electron Hamiltonian
matrix h(t). Hereafter, a boldface symbol denotes a matrix
in a site/level representation of the reduced system. The time-
dependent current through the lead α can be evaluated by the
Keldysh NEGF formalism as [21, 22]

Iα(t) = e

h̄

∫
dτ tr[G<Σa

α + GrΣ<
α + h.c.]. (1)

Here, tr is the matrix trace; AB ≡ A(t, τ )B(τ, t) denotes the
product of the specified lesser (<), retarded (r) or advanced (a)

Green’s function and self-energy matrices in the time domain.
Denote also equilibrium quantities by bar symbols, such as
Ḡs(t, τ ) = Ḡs(t −τ ) and Σ̄s

α(t, τ ) = Σ̄s
α(t −τ ), with s = r, a

or <.
In the linear-response regime, where voltages of small

amplitudes are applied to the leads, the transient current can
be evaluated by

I (1)
α (t) = e

h̄

∫
dτ tr[δG<Σ̄a

α + Ḡ<δΣa
α

+ δGrΣ̄<
α + ḠrδΣ<

α + h.c.], (2)

with the first-order changes of the Green’s functions in
response to the applied voltages as δGs(t, τ ) ≡ Gs(t, τ ) −
Ḡs(t − τ ), and the changes of self-energies as δΣs

α(t, τ ) ≡
Σs

α(t, τ ) − Σ̄s
α(t − τ ). In particular, δGr,a(t, τ ) are obtained

by solving their respective Dyson’s equations, by noting that

δΣs
α(t, τ ) =

∫
dω

�α(ω)

2πω
(e−iωt − e−iωτ )Σ̄s

α(t − τ ). (3)

Here, �α(ω) ≡ F[�α(t)], where F stands for the Fourier
transform operation.

Presuming a time-independent reduced single-electron
Hamiltonian h, equation (2) can be formally simplified (see
appendix A for details). The final expression of the response
current spectrum, Iα(ω) ≡ F[Iα(t)], is

I (1)
α (ω) = e

h

∑
β

�β(ω)

ω

∫
dε tr[Gαβ(ε; ω)], (4)

with
∑

β denoting the summation over all coupling leads, and

Gαβ = δαβ(Ḡ<
+Σ̆a

α + Ḡr
+Σ̆<

α − Σ̆r
αḠ< − Σ̆<

α Ḡa)

+ Ḡr
+Σ̆r

β (Ḡ<Σ̄a
α + ḠrΣ̄<

α ) + (Ḡ<
+Σ̆a

β + Ḡr
+Σ̆<

β )

× ḠaΣ̄a
α − (Σ̄r

αḠ< + Σ̄<
α Ḡa)+Σ̆a

βḠa

− (Σ̄r
αḠr)+(Σ̆r

βḠ< + Σ̆<
β Ḡa). (5)

On the right-hand side (rhs) of equation (5), we have adopted
the abbreviations Ā+ ≡ Ā(ε + ω), (ĀB̄)+ ≡ Ā+B̄+
and Ă ≡ Ā(ε) − Ā(ε + ω) for any matrix, or pair of
matrices. Apparently, Gαβ of equation (5) depends only
on the equilibrium Green’s functions and self-energies; so
does the current spectrum I (1)

α (ω) of equation (4), which is
also of linear dependence on the applied voltage. Gαβ(ε; ω)

can be greatly simplified with the wide-band limit (WBL)
approximation adopted for the leads [16], i.e. Σ̆r,a

α = 0, and
Σ̆<

α (ε) = i[ fα(ε) − fα(ε+)]Γα. Here ε± ≡ ε ± ω, fα(ε) is
the Fermi distribution function for lead α, Γα is the linewidth
matrix for lead α and Γ ≡ ∑

α Γα is the total linewidth
matrix. The WBL approximation has been shown to be valid as
long as the variation of applied voltage stays within the range
of lead bandwidth [7]. Exact numerical investigations have
revealed that the non-WBL effects preserve largely the overall
lineshape of the response current spectrum while modifying the
amplitude [18]. Under the WBL approximation, equation (5)

2
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leads to

GWBL
αβ = δαβ(Ḡr

+Σ̆<
α − Σ̆<

α Ḡa) + Ḡr
+Σ̆<

β ḠaΣ̄a
α

− (Σ̄r
αḠr)+Σ̆<

β Ḡa. (6)

More generally, h(t) varies in time, as the reduced
system may be subjected to time-dependent external fields,
such as laser pulses or bias/gate voltages. We have thus
h(t) = h0 + ΔD(t), with ΔD(t) being the field-induced
single-electron Hamiltonian. In the linear-response regime,
ΔD(t) gives an extra contribution to δGs(t, τ ) and hence
complicates further the final result for Gαβ(ε; ω). The relevant
derivations are presented in appendix A. With nonzero ΔD(t),
displacement current should be explicitly accounted for to
recover the conservation of total current [23, 24]. It is
important to point out that for realistic systems ΔD(t) is
to be determined in a self-consistent manner with Gs(t, τ ).
In principle, the interaction between the reduced system
and external electromagnetic fields that gives rise to ΔD(t)
is characterized by Maxwell’s equations, which need to be
solved simultaneously with Dyson’s equations for Gs(t, τ ).
In practice, a more tractable approach is to adopt a quasi-
static approximation and treat the electrostatic interactions
by solving Poisson’s equation. This approximated approach
has been implemented to simulate the dynamic admittance of
nanoelectronic devices from first principles [7, 25].

2.2. Nonlinear-response current spectrum

2.2.1. General consideration and wide-band limit. In
the nonlinear-response regime, the first-order expansion,
equation (2), as well as the resulting equations (4) and (5),
become inadequate. In such a case, the complete knowledge
on the two-time nonequilibrium Green’s functions is required
for calculating the transient current. However, the EOM of
Gr,<(t, τ ) are coupled integro-differential equations, and thus
extremely difficult to solve. To circumvent this problem, we
resort to a formally exact formalism, developed in [7], for the
transient electronic dynamics of open noninteracting systems.
Its final form is an EOM for the RSDM σ (t) of the reduced
system as follows [7]:

σ̇ (t) = − i

h̄
[h(t), σ (t)] − 1

h̄

∑
α

Qα(t). (7)

Here, Qα(t) characterizes the dissipative interaction between
the system and lead α. The voltages are turned on from t = 0.
The time-dependent current through the lead α is simply

Iα(t) = − e

h̄
tr[Qα(t)]. (8)

Two approximate schemes have been proposed to calculate
Qα(t). One is a complete second-order quantum dissipation
theory [26]. Another involves the WBL treatment for any
connecting lead by assuming a structureless band of infinite
width. To obtain an exact analytical nonlinear-response
current, in the following we shall adopt the latter scheme.

In the WBL, Qα(t) can be obtained as (cf [7] for the
detailed derivation)

Qα(t) = Λασ (t) + σ (t)Λα + [Pα(t) + h.c.], (9)

with Λα ≡ Γα/2, and

Pα(t) = − 1

π

∫ ∞

−∞
dε fα(ε)

{
iU(t)

ei
∫ t

0 dτ [�α(τ)+ε]/h̄

ε − h(0) + iΛ
Λα

+
∫ t

0
dτ eiε(t−τ)/h̄K+

α (t)K−
α (τ )Λα

}
, (10a)

where Λ ≡ ∑
α Λα and

U(t) = exp+

{
− i

h̄

∫ t

0
dτ [h(τ ) − iΛ]

}
, (10b)

K±
α (t) = exp±

{
∓ i

h̄

∫ t

0
dτ [h(τ ) − iΛ − �α(τ)]

}
. (10c)

2.2.2. Nonlinear response in single-lead systems. For a
single-lead system, the subscript α can be dropped for clarity,
and the displacement current is just −I (t) due to conservation
of total electrons. Denote X(ω) ≡ F̃[σ (t)], where F̃ is the
half-Fourier transform defined as F̃[χ(t)] ≡ ∫ ∞

0 χ(t) eiωt dt
for any function χ(t). In the WBL, taking the F̃ operation for
both sides of equation (7) while presuming a time-independent
Hamiltonian h, we have

− h̄ σ 0 − ih̄ ωX(ω) = −i[h̃X(ω)−X(ω)h̃†]−A(ω), (11)

where σ 0 ≡ σ (t = 0), h̃ ≡ h − iΛ and A(ω) ≡
F̃[P (t) + h.c.]. For each ω, X(ω) can be obtained by
solving the linear problem of equation (11) with A(ω) known
from equation (10), and the current spectrum is evaluated via
I (ω) = −e tr[σ 0 + iωX(ω)]. While in principle the initial
time t = 0 can be taken to be any instant, in practice a
convenient choice is when the composite device-lead(s) system
is in its equilibrium/ground state in the absence of external
voltages.

An alternative and often more convenient route is to
analyze the induced RSDM, Y (t) ≡ σ (t) − σ (t = 0). The
EOM for Y (t) in the WBL is

Ẏ = − i

h̄
(h̃Y − Y h̃†) − 1

h̄
(δP + h.c.), (12)

where δP (t) ≡ P (t) − P (t = 0). Taking the F̃ operation
for both sides of equation (12) while noting that Y (ω) ≡
F̃[Y (t)] = F̃[Ẏ (t)]/(−iω), we have

−ih̄ ωY (ω) = −i[h̃Y (ω) − Y (ω)h̃†] − B(ω), (13)

which parallels equation (11) with zero initial Y (t = 0). Here,
B(ω) ≡ F̃ [δP (t) + h.c.] and I (ω) = −e tr[iωY (ω)],

The specific form of A(ω) or B(ω) depends on the time
dependence rather than the amplitude of the applied voltages.
Therefore, equations (11) and (13) can achieve both the linear-
and nonlinear-response current spectra through a single-lead
system, as we will elaborate further in section 4.

3
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Figure 1. Equivalent classical circuit of a general two-terminal
molecular device.

3. Linear-response dynamic admittance and
equivalent circuit

Mapping quantum coherent transport properties of nanostruc-
tures to equivalent classical circuit representations has impor-
tant implications in designing novel nanoelectronic devices.
Recently, a classical circuit consisting of a resistor–capacitor
(RC) branch and a resistor–inductor (RL) branch connected
in parallel (see figure 1) has been proposed, which quantita-
tively characterizes the dynamical admittance of an aluminum–
carbon nanotube–aluminum junction [25]. It has been expected
that this RC–RL circuit can work for a general two-terminal
molecular device. In this section, we will look into this is-
sue by the derivation and analysis on the analytical admittance
spectrum of model open systems.

Consider a system consisting of a single spinless level
of energy ε0, which is coupled to WBL leads with a total
linewidth � = ∑

α �α . Here, all the matrices of system
dimension which appeared in section 2.1 reduce to scalars due
to the only one system level in presence. Equation (6) thus
reduces to

I (1)
α (ω) = e

h

∑
β

�β(ω)

ω

(
i�αδαβ + �α�β

h̄ω + i�

)

×
∫

dε [ f (ε) − f (ε+)][Ḡr(ε+) − Ḡa(ε)]. (14)

For a general two-lead conductor, the response current
versus the applied external potential can be described by a 2×2
matrix with elements defined as

gαβ(ω) = Iα(ω)/Vβ(ω), (15)

where α, β ∈ L, R. The dynamic admittance is related to all
the four response functions via

G(ω) ≡ 1
4 [gLL(ω) + gRR(ω) − gLR(ω) − gRL(ω)]

= e2

h

ih̄ω� − 4�L�R

4ω(h̄ω + i�)

∫
dε [ f (ε) − f (ε+)]

× [Ḡr(ε+) − Ḡa(ε)]. (16)

We first adopt a symmetric coupling scheme with �L =
�R = �/2. In this case, equation (16) reduces to

G(ω) = e2

h

i�

4ω

∫
dε [ f (ε)− f (ε+)][Ḡr(ε+)− Ḡa(ε)]. (17)

At zero temperature, the integral on the rhs of equation (17) can
be evaluated analytically and then expanded in a Taylor series

Figure 2. (a) The real and (b) imaginary parts of the dynamic
admittance for a single-level system. The coupling to the two leads
are symmetric, i.e. �L = �R = �/2. We present curves for the value
of ε0/� being 0, 0.2, 0.5, 1.0, 2.0 and 5.0, respectively.

of ω:

G(ω) = e2

h

i�

4ω

{
1

2
ln

[
(ε0 + h̄ω)2 + �2/4

ε0
2 + �2/4

]

+ 1

2
ln

[
(ε0 − h̄ω)2 + �2/4

ε0
2 + �2/4

]

+ i arctan

(
ε0 − h̄ω

�/2

)
− i arctan

(
ε0 + h̄ω

�/2

)}

= e2

h

[
�2

�2 + 4ε2
0

+ ih̄ω
�(�2 − 4ε2

0 )

(�2 + 4ε2
0)

2

+ (h̄ω)2 4�2(12ε2
0 − �2)

3(�2 + 4ε2
0)

3
+ O(ω3)

]
. (18)

It is clear that the dynamic admittance depends on the energy
difference between the system level and the lead Fermi energy,
|ε0 − μ

eq
α | = |ε0|. Hereafter, we will ignore the absolute value

sign and use non-negative ε0.
In figure 2, we plot the low-frequency dynamic admittance

at various values of ε0. Figure 2(a) depicts the conductance
(real part of admittance) of the single-level system. As ε0

increases, the conductance decreases to zero, indicating that
the energy level far away from the chemical potential μα does
not contribute to the conductance [2]. Figure 2(b) displays the
susceptance (imaginary part of the admittance). It is apparent
that, for ε0 < �/2, G(ω) is overall inductive (the leading
term of its imaginary part is positive); while for ε0 > �/2,
it is overall capacitive (the leading term of its imaginary part is
negative) [12].

4
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Figure 3. (a) The real and (b) imaginary parts of the dynamic
admittance for a single-level system with system-level energy
ε0 = 0. We present curves for the value of �L/� being
0.5, 0.4, 0.3, 0.2, 0.1 and 0, respectively.

Next, we exploit how the symmetry of system–lead
couplings affects the dynamic admittance. The system-level
energy ε0 is set to be zero. Shown in figure 3 are (a)
the real and (b) imaginary parts of dynamic admittance with
�L/� varying from 0.5 to 0, i.e. from the exactly symmetric
coupling to extremely asymmetric coupling scenario. The
dc conductance (the real part of admittance at ω = 0)
reaches its maximum value of e2/h in the symmetric coupling
limit. It reduces continuously as the couplings become more
asymmetric, and vanishes in the limit of �L/� = 0. We also
note that, with the decrease of the ratio �L/�, the overall effect
of the susceptance varies from inductive to capacitive.

Now we try to map the quantum dynamic admittance of
a two-lead conductor to an equivalent classical circuit. There
are some basic requirements for the proposed circuit: (a) the
dc current component should reproduce the Landauer–Büttiker
steady-state current, (b) the ac behavior should be properly
accounted for at the low-frequency regime and (c) in the
extremely asymmetric coupling limit, such as �L � �R ≈ 0,
the classical circuit should correctly recover an RC circuit
proposed earlier for a mesoscopic capacitor [8]. The simplest
possible candidate which meets the above criteria is just the
aforementioned RC–RL circuit as demonstrated in figure 1.
Under ac bias voltages, its dynamic admittance, G(ω) =
(RC + 1

−iωC )−1 + (RL − iωL)−1, assumes the following
expansion form in the low-frequency range:

G(ω) � 1

RL
− iω

(
C − L

R2
L

)
+ ω2

(
RC C2 − L2

R3
L

)
. (19)

The four elements, RL and L of the RL branch, and RC and C
of the RC branch, are to be determined by the intrinsic system
properties and some basic physical constants.

Consider the symmetric coupling cases, i.e. �L = �R =
�/2. In steady states (only zero frequency is involved), the
RC branch does not contribute to the dc current and L takes no
effect, either. Therefore, the steady-state conductance uniquely
determines the value of RL to be

RL = h

e2

�2 + 4ε2
0

�2
. (20)

The RC branch accounts for the charging effect associated
with the coherent transport process. This can be confirmed
as follows. Consider first a single-level system symmetrically
coupled to two leads, i.e. �L = �R = �/2. The same
time-dependent voltage is applied to both leads, i.e. �L(t) =
�R(t) = �(t). The system-level shift, which can be controlled
by a gate voltage or a substrate, is set to be zero. Due to
the gauge invariance, this amounts to the system-level energy
undergoing a time-dependent shift of −�(t) while the leads
are voltage-free. The linear-response admittance, Gα(ω) =∑

β gαβ(ω) for arbitrary α, is obtained via equation (5) and
then expanded in a Taylor series of ω up to the quadratic order
as follows:

G(ω) = e2

h

[
−ih̄ω

2�

(�2 + 4ε2
0)

+(h̄ω)2 4�2

(�2 + 4ε2
0)

2
+O(ω3)

]
.

(21)
This expansion can be readily fitted to the dynamic admittance
of an RC branch so that the parameter of each circuit element
is extracted. In doing so we arrive at

C = 2e2

h

�

�2 + 4ε2
0

and RC = h

e2
. (22)

Similarly, we can extend the fitting to the single-level system
that is coupled to n identical leads and obtained the RC and C
values as

Cn = 1

n

(
e2

h

4�

�2 + 4ε2
0

)
and Rn = nh

2e2
, (23)

for the n-lead case. In particular, for n = 1, we have

C = e2

h

4�

�2 + 4ε2
0

and RC = h

2e2
, (24)

which recovers exactly Büttiker et al’s result [8]. Apparently,
the charge relaxation resistance RC is universal, regardless of
the transmission detail; while C is dependent on ε0. When
the system is far away from resonance, i.e. ε0 � �/2, the
capacitance goes to zero, indicating that the RC branch is
nearly an open circuit. Hereafter, we assume that the system
is near resonance, i.e. ε0 < �/2, without specification.

The obtained value of RC , as well as the RL already settled
by equation (20), are then adopted for further determination of
the L and C values. By comparing (18) and equation (19) up
to second order in ω, we have

L = h

e2

7

6�

[
1 − 19

12

(
2ε0

�

)2]
,

C = e2

h

1

6�

[
1 − 85

12

(
2ε0

�

)2]
.

(25)

5
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4. Response current through a single-lead system
under applied voltages of different time dependence

Under a large external voltage, the electronic dynamics of the
reduced system goes beyond the linear-response regime. In
such a case, the dynamic admittance involves higher-frequency
components, and equivalent classical circuits are no longer
adequate for even a qualitative description of the electronic
response. The nonlinear-response current depends explicitly
on the time dependence of the applied voltage, and hence needs
to be studied case by case. In this section, we present an
analytical response current spectrum for a single-lead system,
I (ω) = F[I (t)] = F̃[I (t)] (the last equality is due to the
fact that I (t) = 0 at t < 0), under step, delta and sinusoidal
voltages. Since I (t) is real in time, we immediately have
the following symmetries for the response current spectrum:
Re[I (ω)] = Re[I (−ω)] and Im[I (ω)] = − Im[I (−ω)].

4.1. Response current spectrum under a step-function voltage

Consider a step-function voltage switched on at time t = 0, i.e.
�(t) ≡ −eV (t) = ��(t), where �(t) is the Heaviside step
function and � the voltage amplitude. Since the magnitude of
� is not confined, we can go beyond the linear-response regime
by adopting an arbitrarily large �. Under a step voltage, the
time derivative of δP (t) introduced after equation (12) is

δṖ = 2�

π

∫ +∞

−∞
dε f (ε)

ei(ε+�−h̃)t/h̄

ε − h̃
Λ. (26)

Denote C(ω) ≡ F̃[δṖ + h.c.], and hence by definition
B(ω) = C(ω)/(−iω); cf equation (13). At a finite
temperature T > 0, C(ω) is expressed as follows (setting the
Boltzmann constant kB = 1 hereafter):

C(ω) = 2�T
∞∑

m=0

[(h̄ω + � + γm − h̃)−1(γm − h̃)−1Λ

+ Λ(h̄ω − � + γm + h̃†)−1(γm + h̃†)−1] (27)

with γm = i(2m +1)πT . I (ω) is then obtained via solving the
linear equation (13).

In particular, for a system of a single spinless level of
energy ε0, all the matrices of system dimension reduce to
scalars. For such a simple system, numerically exact time-
dependent current has been reported based on the NEGF
approach [27, 28]. The (same) exact I (t) can be achieved
alternatively via an inverse Fourier transform of I (ω) as given
below. At T = 0

I (ω) = −e��

2π(h̄ω + i�)

{
1

h̄ω + �

×
{

1

2
ln

[
(h̄ω + h̄ω0)

2 + (�/2)2

ε2
0 + (�/2)2

]

− i

[
arctan

(
h̄ω + h̄ω0

�/2

)
+ arctan

(
ε0

�/2

)]}

+ 1

h̄ω − �

{
1

2
ln

[
(h̄ω − h̄ω0)

2 + (�/2)2

ε2
0 + (�/2)2

]

− i

[
arctan

(
h̄ω − h̄ω0

�/2

)
− arctan

(
ε0

�/2

)]}}
. (28)

While at T > 0, we have

I (ω) = ie��T

h̄ω + i�

∞∑
m=0

{(ε0 − i�m)−1[(h̄ω + h̄ω0) + i�m]−1

− (ε0 + i�m)−1[(h̄ω − h̄ω0) + i�m]−1}
= e��

h̄ω + i�

{
1

h̄ω + �

[
φ

(
1

2
+ �/2 + iε0

2πT

)

− φ

(
1

2
+ �/2 − ih̄ω − ih̄ω0

2πT

)]
+ 1

� − h̄ω

×
[
φ

(
1

2
+ �/2 + ih̄ω0 − ih̄ω

2πT

)

− φ

(
1

2
+ �/2 − iε0

2πT

)]}
. (29)

Here h̄ω0 ≡ � − ε0, �m ≡ �/2 − iγm and φ(x) is a digamma
function of x .

When the step amplitude � is sufficiently small, I (ω)

obtained via equations (28) and (29) should recover the correct
linear-response admittance G(ω), which had been studied
extensively [8–11] and was already attained in section 3 on a
two-lead system in the extremely asymmetric coupling limit.
In this case, it is well known that the quantum coherent
dynamics can be mapped to an RC circuit with its complex
impedance (the reciprocal of admittance) as follows:

[G(ω)]−1 = Rq + 1

−iωC
. (30)

An important property of equation (30) is that Rq should be
an ω-independent constant except at the removable singularity
ω = 0. It was predicted that, at T = 0, the real impedance
amounts exactly to half a resistance quantum, i.e. Rq =
h/(2e2) [8, 11]. Indeed, it can be shown that, based on
equation (28), we have (see appendix B for details)

Rq = lim
�→0

lim
ω→0+

lim
δ→0+

Re

[
−�δ(ω)

I (ω)

]
= h

2e2
(31)

at T = 0 and ε0 = 0, where

�δ(ω) ≡ F[�(t)e−δt ] = i�

ω + iδ
. (32)

The three limit operations in equation (31) cannot be
interchanged.

It is important to note that the system-level energy is
distinctly resolved in the response current spectrum. In figure 4
we plot I (ω) under step voltages of various amplitudes. It is
interesting to see the real (imaginary) part of I (ω) exhibits
a peak/dip (wiggle) centered precisely at h̄ω = |� − ε0|.
This characteristic resonance feature of I (ω) can be identified
easily from both equation (28) and the rhs of the first equality
of equation (29). This resonance signature stands in both
linear- and nonlinear-response regimes, and can be trivially
extended to an open system of a number of uncorrelated levels.
Therefore, it may be employed to determine the intrinsic level
energies of a few-electron quantum dot via the experimentally
measured transient response current to manually controlled
step voltage pulses.

6
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Figure 4. (a) Real and (b) imaginary parts of I (ω) for a single-level
system under a step voltage pulse. The lines represent different
voltage amplitudes. The other parameters adopted are: T = 0 and
ε0 = 20�.

4.2. Response current spectrum under a delta-function voltage

For a delta-function voltage, i.e. �(t) = ��(t)δ(t) and δP is
expressed as

δP = i

π
[1 − ei�/(2h̄)]

∫ +∞

−∞
dε f (ε)

ei(ε−h̃)t/h̄

ε − h̃
Λ. (33)

At T > 0, B(ω) involved in equation (13) assumes the
following form:

B(ω) = i(2T )

∞∑
m=0

[
1 − ei�/(2h̄)

(h̄ω + γm − h̃)(γm − h̃)
Λ

− Λ
1 − e−i�/(2h̄)

(h̄ω + γm + h̃†)(γm + h̃†)

]
. (34)

I (ω) can then be evaluated via solving the linear equation (13).
In particular, for a system consisting of a single spinless

level of energy ε0, we finally have

I (ω) = − e�

2π(h̄ω + i�)

{
ei�/(2h̄) − 1

2

×
{

ln

[
ε2

0 + (�/2)2

(ε−
0 )2 + (�/2)2

]

+ 2i

[
arctan

(
ε0

�/2

)
− arctan

(
ε−

0

�/2

)]}

+ 1 − e−i�/(2h̄)

2

{
ln

[
ε2

0 + (�/2)2

(ε+
0 )2 + (�/2)2

]

− 2i

[
arctan

(
ε0

�/2

)
− arctan

(
ε+

0

�/2

)]}}
(35)

at T = 0 with ε±
0 = ε0 ± h̄ω. At T > 0, we arrive at

I (ω) = ieh̄ω�T

h̄ω + i�

∞∑
m=0

[
ei�/(2h̄) − 1

(ε−
0 − i�m)(ε0 − i�m)

+ 1 − e−i�/(2h̄)

(ε+
0 + i�m)(ε0 + i�m)

]

= −e�

π(h̄ω + i�)

{[
φ

(
1

2
+ �/2 + iε−

0

2πT

)

− φ

(
1

2
+ �/2 + iε0

2πT

)]
[1 − ei�/(2h̄)]

− [1 − e−i�/(2h̄)]
[
φ

(
1

2
+ �/2 − iε+

0

2πT

)

− φ

(
1

2
+ �/2 − iε0

2πT

)]}
. (36)

It is readily verified that the current spectrum can be factorized
as I (ω) = sin( �

2h̄ )K (ω) at resonance (ε0 = μeq =
0), where K (ω) is a certain complex function independent
of �.

The linear-response admittance, G(ω) = I (ω)/V (ω),
does not rely on the specific time-dependent form of the
applied voltage. However, the delta-function form is
most convenient in achieving G(ω), both analytically and
numerically. This is due to the fact that V (ω) = −�(ω)/e =
−�/(2e) is an ω-independent constant. In this sense, we have
I (ω) ∝ G(ω) for any �. In particular, for a sufficiently small
�, ei�/(2h̄) − 1 ≈ 1 − e−i�/(2h̄) ≈ i�/(2h̄), and equation (35)
leads to

G(ω) = e2

h̄

i�

2π(h̄ω + i�)

{
1

2
ln{[ε2

0 + (�/2)2]2

× [(ε−
0 )2 + (�/2)2]−1[(ε+

0 )2 + (�/2)2]−1}

+ i

[
arctan

(
ε+

0

�/2

)
− arctan

(
ε−

0

�/2

)]}
, (37)

which recovers equation (3) in [10].
Similar to the step voltage case, the relative position of

the system level with respect to μeq is reflected in I (ω) under
a delta voltage pulse. Figure 5 depicts I (ω) at T = 0 for
various ε0 ranging from negative (lower than μeq) to positive
(higher than μeq) values. Different from that in figure 4, now
the resonance signature appears at the frequency h̄ω = |ε0|,
independent of the value of �.

4.3. Response current spectrum under a sinusoidal voltage

Now we turn to a cosine-function voltage, �(t) =
��(t) cos(�t), with � being the driving frequency. To get
away from the tricky divergence, we start from the EOM for
σ (t) (equation (7)) instead of that for the induced RSDM

(equation (12)). Note that e
i
h̄

∫ t
0 �(τ)dτ = ei( �

h̄�
) sin(�t) =∑∞

k=−∞ Jk(
�

h̄�
)eik�t , where Jk(x) is the kth Bessel function

of the first kind. Without loss of generality, we consider the

7
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Figure 5. (a) and (c) Real and (b) and (d) imaginary parts of I (ω) for a single-level system under a delta voltage pulse. The lines represent
different ε0. The other parameters adopted are: T = 0 and � = 20�.

case of �
h̄�

> 0. After some straightforward algebra, we have

F̃[P + + h.c.] = 1

π

∞∑
k,p =−∞

(−1)k
Jk(

�
h̄�

)Jp(
�

h̄�
)

ω + (k + p)�

×
∫ ∞

−∞
dε f (ε)

[
1

ε+ + ph̄� − h̃
Λ

− Λ
1

ε− − kh̄� − h̃†

]
, (38)

F̃[P − + h.c.] = − 1

π

∞∑
k=−∞

Jk

(
�

h̄�

) ∫ ∞

−∞
dε f (ε)

×
{[

1

ε+ + kh̄� − h̃
− 1

ε − h̃

]
Λ

ω + k�
− Λ

ω − k�

×
[

1

ε− + kh̄� − h̃†
− 1

ε − h̃†

]}
. (39)

Therefore, A(ω) required for equation (11) is obtained
by combining the rhs of equations (38) and (39). I (ω)

is then readily evaluated after solving the linear problem
equation (11).

In particular, for a system consisting of a single spinless
level of energy ε0, the solution of equation (11) leads to

I (ω) = −e
i�σ0 + ωA(ω)

h̄ω + i�
, (40)

where σ0 = 1/2 − arctan(2ε0/�)/π at T = 0, and A(ω)

is simply the sum of the rhs of equations (38) and (39),
with all involving matrices of system dimension reduce to
scalars. At any temperature T , the integrations over ε involved
in equations (38) and (39) can be done analytically as in

sections 4.1 and 4.2. The tedious complete expression of A(ω)

is left to appendix C. Here, we demonstrate both the linear- and
nonlinear-response current spectra in figure 6. It is apparent
from figure 6 and from the poles in equations (38) and (39)
that the resonance signals arise at the exact multiples of the
driving frequency �. In the linear-response regime, the current
appears almost exclusively at the ‘fundamental frequency’ �

with overall small magnitude; see figure 6(a). As the voltage
amplitude is enlarged, the overtone components gain more
importance. For instance, with the � as large as 5�, up to the
second overtone (corresponding to ω = 3�) can be observed
distinctly in I (ω); see figure 6(b).

5. Concluding remarks

The linear-response quantum coherent dynamics of a general
two-terminal conductor is well characterized by an equivalent
classical RL–RC circuit, which expresses the dynamic
admittance accurate up to the quadratic order in frequency. For
systems comprised of a single level, the electronic admittance
ranges from an overall inductive behavior in the near-to-
resonance cases to a capacitive-insulating feature in far-from-
resonance cases. As the coupling strength between the system
level and one of the leads weakens continuously, the RL
branch becomes trivial and the RC branch recovers gradually
the values for a single-lead capacitor.

The nonlinear-response current spectrum are conspicu-
ously different under various types of applied voltages. For
a single-lead system, transient response current often exhibits
rapid oscillations on top of an exponential decay [15]. The
exponential profile corresponds to the factor (h̄ω + i�)−1 in

8
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Figure 6. Real and imaginary parts of current spectrum for a
single-level system driven by a cosine-function voltage with the
amplitude of (a) � = 0.005� and (b) � = 5�. Other parameters
adopted are T = 0, ε0 = −2.5� and � = 10�.

I (ω), which is manifested in the low-frequency range; see,
for instance, equations (28) and (35). The rapid oscillations
of the time-dependent current originate from the rest of the
parts of I (ω), which reflect either the energetic configuration
of the reduced system or the characteristics of the driving volt-
age, depending on the case. For systems consisting of a single
level, the level energy ε0 is resolved distinctly at the frequency
h̄ω = |� − ε0| and h̄ω = |ε0| under step- and delta-function
voltages, respectively. However, ε0 is not explicitly expressed
by a sinusoidal voltage. Instead, the driving voltage frequency
is clearly manifested in the response current spectrum.

For a realistic molecular device, first-principles simula-
tions have been carried out to mimic its current response to
time-dependent voltages applied to the leads [7]. The calcu-
lations are based on a time-dependent density-functional the-
ory (TDDFT) [29] for open systems. Within the framework of
TDDFT, an effective noninteracting system, the Kohn–Sham
reference system [30], is treated explicitly. The transient cur-
rent in response to an applied voltage is obtained by solving the
time evolution of the Kohn–Sham system [22]. In principle this
approach would yield the exact dynamics of any realistic sys-
tem, provided that the exact exchange-correlation functional
and dissipation functional were known. Therefore, combining
first-principles simulations and analytical results of admittance
and current spectra presents a new direction in design and im-
plementation of nanoelectronic devices.
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Appendix A. Derivation of linear-response current

Consider a noninteracting open system which is characterized
by the single-electron Hamiltonian h(t). Its linear-response
transient current under an applied voltage is expressed as
equation (2). To evaluate the response current spectrum
Iα(ω) ≡ F[Iα(t)], we need to know the first-order changes
of Gr, G<, Σr,a and Σ<. The first-order changes of the self-
energies can be evaluated with equation (3), while the first-
order changes of the Green’s functions can be evaluated by
solving the following Dyson’s equations:

Gr(t, τ ) = gr(t, τ ) +
∫

dτ1

∫
dτ2 gr(t, τ1)Σr(τ1, τ2)

× Gr(τ2, τ ), (A.1a)

G<(t, τ ) =
∫

dt1

∫
dt2 Gr(t, t1)Σ<(t1, t2)G

a(t2, τ ), (A.1b)

where gr(t, τ ) is the retarded Green’s function of the isolated
system.

For a time-independent system Hamiltonian, i.e. h(t) =
h, δGr(t, τ ) originates solely from the first-order change of the
retarded self-energy as follows:

δGr(t, τ ) =
∫

dτ1

∫
dτ2 ḡr(t − τ1) δΣr(τ1, τ2)

× Ḡr(τ2 − τ ) +
∫

dτ1

∫
dτ2 ḡr(t − τ1)

× Σ̄r(τ1 − τ2) δGr(τ2, τ ). (A.2)

Equation (A.2) is actually a recursive relation for δGr(t, τ ),
so that its rhs can be expanded further to an infinite series,
and each term in the series would contain δΣr as part of the
integrand. The first-order change of the lesser Green’s function
is

δG<(t, τ ) =
∫

dt1

∫
dt2 [δGr(t, t1)Σ̄<(t1 − t2)

× Ḡa(t2 − τ ) + Ḡr(t − t1)δΣ<(t1, t2)

× Ḡa(t2 − τ ) + Ḡr(t − t1)Σ̄<(t1 − t2)

× δGa(t2, τ )]. (A.3)

By inserting equations (3), (A.2) and (A.3) into equation (2)
and taking a double Fourier transform, the final expression of
response current spectrum I (1)

α (ω), equations (4) and (5), is
achieved.

If a time-dependent system Hamiltonian is considered, i.e.
h(t) = h + ΔD(t), an additional term would arise on the rhs
of equation (5), which originates from the deviation of gr(t, τ )

from its equilibrium counterpart ḡr(t − τ ):

δgr(t, τ ) ≡ gr(t, τ ) − ḡr(t − τ )

= 1

2π

∫
dω

ω
ΔD(ω)(e−iωt − e−iωτ )ḡr(t − τ ), (A.4)

where ΔD(ω) ≡ F[ΔD(t)]. The additional contribution to the
response current spectrum is

I ′
α(ω) = e

h

ΔD(ω)

ω

∫
dε tr[G′

αβ(ε; ω)], (A.5)

9
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with

G′
αβ = Σ̆r

αḠ< + Σ̆<
α Ḡa − Ḡ<

+Σ̆a
α − Ḡr

+Σ̆<
α

− Ḡr
+Σ̆r(Ḡ<Σ̄a

α + ḠrΣ̄<
α ) − (Ḡ<

+Σ̆a + Ḡr
+Σ̆<)

× ḠaΣ̄a
α + (Σ̄r

αḠ< + Σ̄<
α Ḡa)+Σ̆aḠa

+ (Σ̄r
αḠr)+(Σ̆rḠ< + Σ̆<Ḡa). (A.6)

The total linear-response current is thus the combination of
equations (4) and (A.5).

Appendix B. Charge relaxation resistance under a
step voltage

Consider the resonance case of ε0 = μeq = 0 at T = 0, with
a slowly decaying exponential function attached to the step
voltage pulse, i.e. �δ(t) = ��(t) e−δt . From equation (28),
the response current spectrum is

I (ω) = − e��

π(h̄ω + i�)
[Ar(ω) + iAi(ω)], (B.1)

with Ar (ω) and Ai(ω) being two real functions:

Ar (ω) = 1

2

{
1

h̄ω + �
ln

[
(h̄ω + �)2 + (�/2)2

�2/4

]

+ 1

h̄ω − �
ln

[
(h̄ω − �)2 + (�/2)2

�2/4

]}
, (B.2)

Ai(ω) = − 1

h̄ω + �
arctan

(
h̄ω + �

�/2

)

− 1

h̄ω − �
arctan

(
h̄ω − �

�/2

)
. (B.3)

Therefore, we have

lim
δ→0+

Re

[
�δ(ω)

I (ω)

]
=

(
2π

e2�

)

× Im

[
(h̄ω + i�)(ω − iδ)

(ω2 + δ2)(A2
r + A2

i )
(Ar − i Ai)

]∣∣∣∣
δ→0+

=
(

h

e2�

)[
�Ar − ωAi

ω(A2
r + A2

i )

]
. (B.4)

Note that

lim
�→0

lim
ω→0+

[
Ar (ω)

h̄ω

]
= lim

�→0

[
− 1

�2
ln

(
1 + 4�2

�2

)

+ 2

�2 + �2/4

]
= 4

�2
, (B.5)

lim
�→0

lim
ω→0+

Ai(ω) = lim
�→0

[
− 2

�
arctan

(
2�

�

)]
= − 4

�
. (B.6)

Combining equations (B.4)–(B.6) finally leads to the expected
linear-response Rq given by equation (31).

Appendix C. Analytical expression for A(ω) under a
cosine-function voltage

The last piece of knowledge to achieve an analytical current
spectrum I (ω) under a cosine voltage is the expression of
A(ω). The integrations over ε involved in equations (38)

and (39) can be performed analytically by the residue theorem.
We thus have

A(ω) = �

π

∞∑
k=−∞

Jk

(
�

h̄�

){
1

ω − k�

×
{

1

2
ln

[
(ε+

0 − kh̄�)2 + �2

ε2
0 + �2

]

− i

[
arctan

(
ε+

0 − kh̄�

�

)
− arctan

(
ε0

�

)]}

− 1

ω + k�

{
1

2
ln

[
(ε−

0 − kh̄�)2 + �2

ε2
0 + �2

]

+ i

[
arctan

(
ε−

0 − kh̄�

�

)
− arctan

(
ε0

�

)]}}

+ �

π

∞∑
k,p=−∞

(−1)k Jk(
�

h̄�
)Jp(

�
h̄�

)

ω + (k + p)�

×
{

1

2
ln

[
(ε−

0 − ph̄�)2 + �2

(ε+
0 + kh̄�)2 + �2

]

+ i

[
arctan

(
ε−

0 − ph̄�

�

)

+ arctan

(
ε+

0 + kh̄�

�

)
− π

]}
(C.1)

at T = 0; and at T > 0 we have

A(ω) = i
2�

β

∞∑
k,p=−∞

(−1)k+1
Jk(

�
h̄�

)Jp(
�

h̄�
)

ω + (k + p)�

×
∞∑

m=0

(k − p)h̄� + 2ε0

(γm + ph̄� − ε−
0 + i�)(γm + kh̄� + ε+

0 + i�)

+ i
2�

β

∞∑
k=−∞

Jk

(
�

h̄�

)

×
∞∑

m=0

[
1

(γm + ε+
0 − kh̄� + i�)(γm + ε0 + i�)

− 1

(γm − ε−
0 + kh̄� + i�)(γm − ε0 + i�)

]

= �

π

∞∑
k,p=−∞

(−1)k+1
Jk(

�
h̄�

)Jp(
�

h̄�
)

ω + (k + p)�

×
[
φ

(
1

2
+ � − iε+

0 − ikh̄�

2πT

)

− φ

(
1

2
+ � + iε−

0 − iph̄�

2πT

)]

+ �

π

∞∑
k=−∞

Jk

(
�

h̄�

){
1

ω + k�

[
φ

(
1

2
+ � + iε0

2πT

)

+ φ

(
1

2
+ � + iε−

0 − ikh̄�

2πT

)]
− 1

ω − k�

×
[
φ

(
1

2
+ � − iε0

2πT

)
− φ

(
1

2
+ � − iε+

0 + ikh̄�

2πT

)]}
.

(C.2)
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